Blocking Javascript

Blocking of scripts used for ads & tracking is becoming more popular

Mixed scripts combine ad/tracking and functional components

|dentify functions that are used for tracking and block those

« Create “surrogate” versions

Avoid blocking “gateway” functions that are used for network connections

Graph model

sendReq() 8 XMLHttpRequest.send()

o~ 8 Context :

getMouseMove() ‘*~© O DOM
@® sStorage || ¥
Behavior
. Web API
 |2 Me -~
O Network call
@ Function a

Figure 6: A simplified NoT.js’s graph on mouse movement
tracking.

send update | getMouse
Features Req() | Cookie() Move ()
Number of requests sent 1 1 1
Is gateway function 1 0 0
Number of cookie (setter) 0 1 0
Number of web API (getter) 0 0 1
Number of arguments 1 1 0
Number of callee functions 1 1 0
Number of caller functions 0 1 1
Ascendant has cookie accesses 1 0 0
Descendant has cookie accesses 0 0 1
Ascendant has web API accesses 1 1 0

Machine Learning

« Labeling: function is tracking if:
* it participates in call stack of a tracking request (as determined by blocklist)

It does not participate in a non-tracking request

» Use this to train a random forest classifier Model | Section Procision | Recall | F1
Score
NoT.js Standard - 5.1 94.3% 98.0% 96.2%
NoT.js Obfuscation - 5.3 93.5% 90.4% | 91.9%
NoT.js Coverage - 5.3 88.4% 95.7% | 91.9%
WebGraph | Comparison - 5.4 49.3% 66.4% | 56.5%
SugarCoat | Comparison - 5.4 23.0% 22.6% | 22.8%

Table 4: NoT.js’s precision, recall, F1-score in standard set-
tings, enhanced coverage, obfuscation robustness, and com-
parison with existing tools.

Breakage

Category WebGraph
Minor Major

Navigation

SSO

Appearance

Miscellaneous

SugarCoat
Major

Minor

NoT.js

Minor

Major

Other Observations

« 32.1% of functions are tracking (?!)

« 13.4% of scripts are mixed, with 62.3% of websites having at least one mixed
script

e Only 3.9% of functions are mixed (both tracking & non-tracking)

* 0.8% of these functions must be blocked

Discussion

* How resilient is this approach? E.g., function names changes, mixed
functions, adversarial ML

* Is the performance overhead practical?
* Does this approach introduce security vulnerabilities?

 Are false positives low enough? What is a usable level? Can it be user-
tunable?

« Again, what is the blocking end game? Server-side tracking?

« Can this be used in other contexts, e.g., malicious scripts?

Wrap Up

« Other discussion points?
« What did you find surprising?
* Who really liked this paper? Really hated it?

